This paper presents the results of the design process focused on the development of the energy subsystem (ES) of a wave energy converter (WEC). The ES is an important electrical part that significantly affects the energy reliability and energy efficiency of the entire WEC device. The designed ES was intended for compact WECs powering IoT network devices working in the distributed grid. The developed ES is an electronic circuit consisting of three cooperating subsystems used for energy conversion, energy storage, and energy management. The energy conversion subsystem was implemented as a set of single-phase bridge rectifiers. The energy storage subsystem was a battery-less implementation based on the capacitors. The energy management subsystem was implemented as a supervisory circuit and boost converter assembly. The designed ES was verified using the physical experiment method. The model experiment reflected the operation of the designed ES with a piezoelectric PZT-based WEC. The experimental results showed a 41.5% surplus of the energy supplied by ES over the energy demanded by the considered load at a duty cycle of ca. 6 min—37.2 mJ over 26.3 mJ, respectively. The obtained results have been evaluated and discussed. The results confirmed the designed ES as a convenient solution, which makes a significant contribution to the compact WECs that can be applied among others to a distributed grid of autonomous IoT network devices powered by free and renewable energy of sea waves. Finally, it will also enable sustainable development of mobile and wireless communication in those maritime areas where other forms of renewable energy may not be available.
Loading....